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Executive Summary  

Residential and commercial actors contribute around 30% of global energy -

related emissions. By transitioning from consumers to prosumagers , the energy 

consumption and GHG emissions of these two sectors are expected to be 

reduced. This transition can be supported, among other factors, by the 

digitalization  of energy consumption and production systems within buildings. 

Smart Meters (SMs) are o ne of the main technical innovations supporting digital 

information collection and analysis for optimizing energy management.  

The availability of big datasets from electricity smart meters in the residential 

sector not only enables novel types of behaviora l and other demand response 

interventions, but also provides an unprecedented opportunity for a new 

empirical basis for energy -demand policy making. The study of high -frequency 

electricity consumption data can help understand patterns of consumption at 

weekly, daily and hourly level, where the most common mean of understanding 

household behavior has been derived from monthly billing.  

Given the large size of SM datasets, machine -learning  tools become 

indispensable  to process the collected data points and dis till  useful information 

to be fed in the modeling  and policy evaluation pipeline. One of these tools is 

clustering, which is the main focus of this report. Clustering enables the 

extraction of relevant patterns and behaviors in a concise  manner, offering t he 

opportunity to describe an otherwise large ensemble of data points in terms of 

a small number of representative statistical variables.  

The report reviews the relevant literature addressing the problem of clustering 

high -frequency electricity consumption  data. All the technical aspects of 

clustering are taken into account and critically discussed to better understand, 

design and use clustering analyses. Then, three case studies are presented. 

These leverage on recently collected smart meter datasets in tw o countries, Italy 

and Poland, and showcase potential alternative choices in designing a clustering 

strategy.  

This is the first study aimed at using load profile clustering and socio -

demographic segmentation to improve energy demand modeling  at EU level, in 

particular by better capturing energy consumption behaviors , comparing 

different clustering approaches, and including very recent high -frequency 

electricity consumption data.  
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1.  Introduction  

1.1  Context  

The commitment to contain climate change, recently reaffirmed by 197 

countries at the 2021 United Nations Climate Change Conference, requires 

society to set high ambitions for reducing greenhouse gases emissions across 

all economic sectors as quickly as po ssible. A sizeable responsibility in terms of 

decarbonization  efforts falls on the residential and commercial sector. This 

sector covers around 30  % of global energy -related emissions, a contribution in 

emissions that has been steadily increasing and is pr ojected to grow if unabated 

(IEA 2019a). A successful decarbonization  of buildings energy services involves 

two complementary types of actions: from the supply -side, the increase in 

renewable generation, while from the demand -side, behavioral  changes and 

efficiency improvements are needed. Other synergistic goals beyond the climate 

domain, like energy independence and less polluted air, further justify the 

benefits of these types of actions.  

While society envisions the necessity of a carbon neutral building s sector, it is 

also undergoing disruptive trends of change, which are set to deeply impact the 

way energy is supplied and consumed. These broad societal trends, their 

relationship with energy demand and their alignment with a clean energy 

transition are a t the core of the newTRENDs project. Among these trends, two 

are of particular interest when considering the buildings sector in actively 

reducing their carbon footprint: prosumaging and digitalization . Transitioning 

from consumers to prosumagers, resident ial and commercial actors can reduce 

buildings emissions on both the aspects mentioned above: they become 

producers of clean energy, e.g. via photovoltaic panels, and they optimize the 

operation of technologies to minimize overall energy cost, which may le ad to 

consumption reduction. This transition is made possible, among other factors, 

by the increasing digitalization  of the energy consumption and production 

system within buildings. Smart meters are one of the main technical innovations 

supporting digital  information collection and analysis for optimizing energy 

management decisions. The large -scale deployment of smart meters can lead to 

lower energy consumption and lower utility infrastructure costs.  

1.2  Smart -meters  

Smart Meters (SMs) are electronic systems that measure energy consumption, 

and transmit and receive data using electronic communication (Kochanski, 

Korczak, and Skoczkowski 2020). While the original motivation for widespread 

SM deployment in the European Union (EU) was to promote energy efficiency  

(Directive 2009/72/EC), it has been recently extended to include also the final 

customersõ empowerment, e.g., through the integration of SMs with Home 

Energy Management Systems (Directive (EU) 2019/944). In fact, European smart 

energy solutions providers have recognized SMs as òthe greatest consumer 
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empowerment tool to be introduced since the electrification of European 

societies over 100 years agoó (ESMIG 2017). In 2018, over 34  % of EU citizens 

had a SM, which made the EU SM penetration the second highes t in the world, 

following North America (Energy (European Commission) et al. 2020). The 

rollouts of SMs have been advancing at different rates across the EU Member 

States since 2001, when the first large -scale roll -out started in Italy.  

SMs can measure dif ferent energy carriers, such as gas and heat, but the 

electricity SMs are the most widespread. Still, their role and applications in 

electricity demand modeling  have not yet been fully explored. At the same time, 

the importance of electricity demand modeling  is growing, since the global 

electricity demand is expected to increase more than twice the rate of the global 

energy demand in the coming years (IEA 2019b).  

Both the SM penetration rates and the significance of electricity in the EU 

residential s ector differ across the continent. The share of electricity in the 

overall energy consumption of households in 2018 varied between 11  % in Latvia 

and 72  % in Malta, while the average for the EU was 24  % (ODYSSEE-MURE 2021b, 

2021a). Comparing these shares w ith the electricity SM penetration across the 

Union shows that four  groups of Member States can be differentiated (Figure 1):  

* SM outperformers ð Member States where the importance of electricity in 

households is similar to or lower than the EU average, but  the SM 

penetration rate is high (LV, NL, SI, DK, IT, EE);  

* SM underperformers ð Member States where the importance of electricity 

in households is higher than the EU average, but the SM penetration rate 

is low (CY, BG, GR, PT, FR); 

* SM ambiguous movers ð Member States where the importance of 

electricity in households is similar to or lower than the EU average, and 

the SM penetration rate is low as well (DE, CZ, IE, HU, LT, RO, SK, PL, LU, 

BE, AT, HR); 

* SM leaders ð Member States where the importance of electr icity in 

households is higher than the EU average, and the SM penetration rate is 

also high (MT, ES, SE, FI).  
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Figure  1: Share of electricity in overall energy consumption of 

households (%) and the electricity SM penetration (%) acro ss 

the EU Member States in 2018. Note: Due to missing y -data 

for HR, value of 0 is assumed. In yellow: SM outperformers. In 

red: SM underperformers. In blue: SM ambiguous movers. In 

green: SM leaders.  

 

1.3  Demand Response  

Smart Metering rollouts create new op portunities for energy efficiency 

improvements. The use of Smart Meters by households can enable converting 

them into active customers who are aware of individual energy consumption and 

undertake energy -related activities that allow reducing energy consump tion or 

shifting the time of its use. These activities can also have other objectives, e.g., 

minimizing  the energy costs, meeting environmental goals, increasing energy 

security, system reliability and resilience. The new opportunities of energy 

efficiency  improvements via Demand Response (DR) enabled by SMs can be 

grouped into two main categories.  

The first category of DR options covers actions aimed at changing the context 

in which householdsõ decisions are made, e.g., through rewards or dynamic 

pricing tariffs. These DR methods increase the attractiveness of engaging in 

energy -saving measures by households or shifting their consumption in time. 

Thanks to SM deployments, the conditions of making decisions, such a s energy 
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prices, may change more often than in the case of traditional energy systems, 

characterized  by limited digitalization . What is more, targeted offers (e.g., 

special tariffs) can be addressed to selected clusters of households, whose 

consumption pro files pose specific challenges for energy systems.  

The second category of DR options covers actions aimed at influencing on the 

perception, preferences, and motivations of energy consumers , e.g., through 

information strategies. Thanks to continuous streami ng of highly granular 

energy consumption data provided by SMs, such approaches can lead to 

increasing consumersõ awareness on energy consumption in a long run ð unlike 

traditional activities aimed at energy awareness increase (e.g., information 

campaigns),  whose impact lifespans are typically short. Like the first category of 

DR options discussed, targeted information measures (e.g., special forms of 

individualized messages) can be also addressed to selected clusters of 

households, whose consumption profile s pose specific challenges for energy 

systems.  

Since both discussed categories of DR options offer clear environmental, 

economic, and technical benefits for various stakeholders, their implementation 

can be expected to become more and more popular in the f uture. This may affect 

the energy demand to a potentially great extent. Hence, they need to be 

considered in the energy demand models, which are essential components of 

energy planning, formulating strategies and recommending new policies.  

While SMs create  new opportunities for DR options, at the same time they 

necessitate new analytical tools allowing for knowledge discovery from the 

energy consumption big data. Statistical learning approaches described in this 

report can contribute to answering these need s. 

1.4  Data -driven electricity demand policy  

The availability of big datasets from electricity smart meters in the residential 

sector not only enables novel types of behavioral and other demand response 

interventions (see newTRENDs Task 4.2), but also provides  an unprecedented 

opportunity for a new empirical basis for energy -demand policy making. The 

study of high -frequency electricity consumption data can help understand 

patterns of consumption at weekly, daily and hourly level, where the most 

common mean of u nderstanding household behavior has been derived from 

monthly billing.  

Several types of insights can be extracted from consumption data at this finer 

temporal resolution. SM data, among other purposes, can be used to develop  

accurate statistical models of consumption behavior, identify repeating patterns 

over time and across households, forecast future consumption, quantify the role 

of temperature and other drivers on consumption, estimate the impact of 

exogenous interventions or other potentially disruptiv e events.  

The newly acquired information derived from SM provides a solid basis for 

calibration and validation of bottom -up electricity demand models levels. By 

improving the realism of the modeled  behaviors and scenarios as informed by 
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data collection and  statistical learning, models can better quantify the benefits 

and costs of alternative energy -demand policies.  

Given the large size of SM datasets, machine -learning  tools become 

indispensable  to process the collected data points and distill  useful informa tion 

to be fed in the modeling  and policy evaluation pipeline. One of these tools is 

clustering, which is the main focus of this report. Clustering enables the 

extraction of relevant patterns and behaviors in a concise  manner, offering the 

opportunity to d escribe an otherwise large ensemble of data points in terms of 

a small number of repres entative statistical variables.  

1.5  The datasets: Italy and Poland  

This report leverages on recently collected smart meter datasets in two countries 

to base its empirical fi ndings and insights. The data sets have been collected 

independently and have different characteristics in terms of available variables, 

sampled households, and periods of time. This motivates the design of this 

report as an exploratory collection of alter native ways how clustering can be 

implemented and used to derive outcomes serving similar purposes.  

The Italian dataset covers two separate samples. One was collected during a pilot 

project on smart grid technologies by a large Italian utility. Electricity  smart 

meter readings are available at 15 -minute intervals, and refer to thousands of 

households in the area of Isernia (mid -south Italy). The time series for each 

household covers a certain number of days within a 3 -year period spanning from 

2012 to 2014.  A subsample of households provided also survey information 

regarding ownership of appliances, technical characteristics of dwellings and 

socio -demographics of household members. The other dataset is more recent, 

as it covers the years 2019 and 2020, and involves thousands of households 

from the area around the city of Bologna in Italy. Smart meter readings have an 

hourly frequency and are accompanied with basic contractual information. For 

this second dataset, no socio -demographics nor appliances informat ion are 

provided.  

The dataset from Poland includes hourly smart meters readings from 1 ,674 

households, from January 1, 2015, to December 31, 2015. Energy data is 

combined with socio -economic characteristics of households, including data on 

number of indivi duals in each household, age range of the person answering the 

question, gender, apartment surface, ownership of the apartment, level of 

knowledge and attitude to energy conservation. The dataset covers only 

apartments located in blocks of flats (no single -family houses). In all flats, space 

and domestic hot water are  heated with district heating network, which 

translates to the fact that electricity is not used for those purposes. Also, air 

conditioning is rather rare. For cooking, mainly natural gas is us ed, however it 

cannot be excluded that some of these flats are equipped with electric cookers 

and ovens. Electricity is mainly used for lighting and appliances powering.  
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1.6  Overview  

The following sections focus on the technical aspects of clustering smart met er 

data and illustrate how those techniques can be applied to real -world case 

studies for extraction of useful insights.  

Section 2 starts with the relevant literature on clustering, describing the problem 

of clustering high -frequency electricity consumptio n and how previous academic 

works addressed this problem, including past EU -funded projects. We point the 

reader to relevant meta -reviews that have already done a good job in mapping 

the literature, and emphasize the specific contributions of this work. We  then 

focus on the technicalities of a clustering analysis, touching upon data 

preparation, the extraction of meaningful features to be clustered, and an 

overview of the most popular clustering approaches available, with their pros 

and cons. Possible uses of clustering outcomes are also discussed.  

Section 3 includes the discussion of three clustering analyses, one for each real -

world dataset mentioned above. Each subsection further describes the 

peculiarities of the corresponding dataset, and applies a spec ific clustering 

method or set of methods to it. Outcomes are consequently described and 

discussed.  

Section 4 offers some final thoughts on lessons learned and steps ahead in terms 

of research and policy support.  
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2.  Literature review  

2.1   Comparison of Previous EU  projects  

Statistical learning approaches to analyzing  Smart Meter data have been studied 

in previous EU -funded research projects (Table  1). Our research scope goes 

beyond them in several dimensions. First, we present t he first study aimed at 

using load profile clustering and socio -demographic segmentation to improve 

energy demand modeling  at EU level, in particular by better capturing energy 

consumption behaviors . Second, this is the first study to compare different 

clu stering approaches, concentrating on k-means, with Euclidean distances and 

other alternatives like DTW (Dynamic Time Warping). Third, this is the first study 

that is based on empirical evidence (Smart Meter data) from Poland, where an 

obligation scheme for  installing SMs was introduced only in 2021. Finally, we are 

among the first ones to analyze  recent high -frequency electricity consumption 

data, belonging to a period which includes also the onset of the COVID -19 

pandemic on our lives.  

Table  1:  Past EU-funded research projects involving Smart Meter data 

clustering.  

Project  NATCONSUMER  

NATural Language Energy for Promoting CONSUMER 

Sustainable Behavior  (Kmetty 2016)  

Focus of SM statistical 

learning  

Using load profile clustering and demographic 

segmentation to define the form and content of the 

personalized messages to consumers  

 

Clustering approaches  Hierarchical Clustering (ward), k-means, Latent Profile, 

Time series approach (DTW)  

 

Source countries of SM data  Hungary, UK, Ireland, Italy  

 

SM data timeframe  2008 ð2014 (different periods for different countries)  
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Project  eDREAM  

enabling new Demand REsponse Advanced, 

Market oriented and Secure technologies, 

solutions and business models (H2020) (Gallego 

et al. 2020)  

Focus of SM statistical 

learning  

Using load profile clustering for demand response 

optimal programs design  

 

Clustering approaches  

 

k-means, Density Based Scan  

Source countries of SM data  

 

Italy  

SM data timeframe  2015 ð2019  

 

2.2  Meta -review of load curve segmentation 

literature  

In the last decade, clustering algorithms have been widely applied in the analysis 

of energy consumption, due to the increase d availability of smart meter data 

(Rajabi  et al. 2020). Clustering algorithms can easily classify residential 

electricity customers depending on their consumption patterns, and evaluate 

their consumption trends (Benítez et al. 2014).  

Ὧ-means is the most common algorithm, due to its versatility a nd easy 

implementation. In Ref. (Rhodes et al. 2014), for example, authors cluster with 

Ὧ-means the average curves for each home and season, finding two 

rep resentative load profiles for each setting . Subsequently, they perform a 

regression to check correl ations between survey responses and cluster 

identification. Another interesting application of Ὧ-means is for the selection of 

good target costumers for demand response programs, as in (Martinez -Pabon, 

Eveleigh, and Tanju 2017). With the same aim, Ὧ-mean s has been applied to the 

daily load profile divided in to  four time periods, for the identification of 

consumers who more easily shift the load peaks after receiving incentives 

(Yilmaz, Weber, and Patel 2019). Teeraratkul and coauthors (Teeraratkul, OõNeill, 

and Lall 2017) use Ὧ-medoids, a variation of Ὧ-means clustering where the center 

of the cluster is an existing curve. In their work, they apply a distance measure 

that consider s the shape of the curve (Dynamic Time Warping). Using Markov 

techniques, t hey predict future electricity consumption and electrical devices 

used. Hidden Markov model (HMM) was used by Albert and Rajagopal (Albert 

and Rajagopal 2013) to infer occupancy states  from consumption load curve. 



 

Delivera ble 5.1  

Statistical learning of residential electricity consumption data  

 

 

14  

Finally, they use spectral clustering to a ggregate customers, finding a high 

degree of predictability in user consumption.  

Despite being commonly applied, Ὧ-means has some drawbacks. For example, it 

is not defined in a probabilistic way, and it only consider s distance from 

centroids to assign clu ster membership, lacking flexibility in cluster shape (the 

algorithm does not identify non -convex cluster s). Among the alternative 

approaches, there is the finite mixture model (Stephen et al. 2013), used in 

(Haben, Singleton, and Grindrod 2015) to identif y ten behavioral  groups of 

costumers based on their peak demands and variability. Self -organizing maps 

(SOM) was used in (McLoughlin, Duffy, and Conlon 2015) to find profile classes 

of consumers, after showing that the technique performs better than the Ὧ-
means and Ὧ-medoids. In (Ullah et al. 2020), authors first use deep learning to 

transform energy consumption on a high -level representation, and then they 

apply the SOM clustering algorithm. Another common approach, latent class 

regression, was compared with Ὧ-means in (Hsu 2015) for the prediction of 

energy consumption.  The result showed that the former gives better prediction 

accuracy, while the latter assure s more stable clusters.  

Considering the broad range of approaches applied for the clustering of  

electricity load consumption, many reviews have been written, attempting to 

compare different techniques (Y. Wang et al. 2015; Yilmaz, Chambers, and Patel 

2019; Rajabi et al. 2020).  

Clustering method s have been recently adopted also to evaluate the impact  of 

COVID-19 on consumption pattern (Narajewski and Ziel 2020). For example, in 

(García et al. 2021a) authors use as a feature the (normalized) mean energy 

consumption per day, to cluster different types of residential and non -residential 

consumers, and to  check which groups increased/decreased their consumption 

during the lockdown.  
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3.  Clustering methodology  

3.1  Data preparation  

Data preparation before the clustering can be as important as the clustering 

itself, as it can avoid spurious results and ensures the qua lity of the eventual 

insights of the analysis. There are two preliminary steps:  

1.  Search for outliers . Although clustering is more robust than other 

techniques to outliers, as outliers potentially end up within their own 

separate clusters, it is a good pract ice to preprocess and remove those 

beforehand or when they emerge during the exploratory phase. This is 

often done by visualizing data distributions of consumption for time unit 

and by defining reasonable ranges of expected behaviors . Values which 

are too small may be due to faulty sensors, empty house or blackouts, 

which should not contribute to an analysis focusing on more regular 

consumption habits. At the higher end, faulty sensors might be involved 

as well, while excessive electricity readings are avoi ded by default by the 

utility as power is cut when it exceeds contractual thresholds.  

2.  Identification of missing or incomplete data , which can be removed or 

replaced with an interpolation from existing values. Some time unit in a 

day, or days in a year may be missing; interpolation should be done only 

for small gaps.  

In the presence of meta -data, it can be decided to focus on sub -samples of 

interest (as for example, excluding electricity consumption from non -domestic 

users or non -resident users). Low consump tion days may be either kept out from 

the analysis, or included, if we are interested in classifying that as a distinct 

behavior . 

3.2  Features extraction  

A critical decision for the clustering analysis is the choice of features by which 

similarity among cluste rs will be quantified. The choice of features will depend 

on the definition of the clustering unit, which can be the household (HH) (this is 

the choice we adopt in the case studies from Section 4 onwards), a consumption 

curve within a certain time frame (e .g. 24  hour s) across all HHs, or a 

consumption curve given a certain HH. The objective of clustering is pooling 

together similar units and distinguish units which are inherently different. 

Different choices of units and features can answer different resear ch questions 

(Ylmaz, Chambers et al. 2019).  
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3.2.1  Normalization  

When considering consumption curves, the features of interest are the output of 

some function of the consumption data points provided by the smart meters. A 

basic transformation of the original rea dings that is often considered is 

normalization. Normalization  of SM electricity consumption data may have 

several purposes. For example, they can be stated as follows:  

1.  to enable using models based on time series representations (Balachander 

and Paulraj  2021),  

2.  to focus on the variations instead of the magnitude of load data (Z. Wang 

and Wang 2021),  

3.  to eliminate differences in amplitudes of daily load curves between 

households (Fang et al. 2021),  

4.  to help achieve better accuracy of energy consumption forec asting (Khan 

et al. 2021),  

5.  to compare patterns between different consumers (Jang et al. 2021) 

(García et al. 2021b),  

6.  to have different features on the same scale (Talei et al. 2021).  

Load curves can be normalized to householdsõ daily peak consumption values 

or other values, such as the absolute peak of the entire data set. Different scaling 

methods can be used (Talei et al. 2021) (Tureczek and Nielsen 2017), such as:  

1.  Min-max scaling ð for each value in the time series, the minimum is 

subtracted and the n divided by difference between the maximum and 

minimum;  

2.  Standard deviation scaling ð for each value in the time series, the mean is 

subtracted and then divided by the standard deviation;  

3.  Robust scaling ð scaling based on percentiles.  

Raw SM electricity co nsumption (non -normalized ) data may be used for similar 

purposes, such as discovery of electricity consumption patterns of residential 

users (Zhou, Yang, and Shen 2017) (Yildiz et al. 2017). Though normalization is 

a standard step in the majority of cluste ring studies, some argue that in certain 

cases normalizing the SM data may be unsuccessful in providing unambiguous 

clusters (Tureczek and Nielsen 2017). The analytical approaches that work with 

non -normalized  electricity consumption data have been used fo r such purposes 

as: 

1.  Distinguishing  appliance, lighting and plug load profiles (George and 

Swan 2017),  

2.  Evaluating  the impacts of real -time feedback on residential electricity 

consumption (Gans, Alberini, and Longo 2013),  
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3.  Evaluating  the impacts of outdoor te mperature and household 

characteristics on hourly electricity consumption (Kipping and Trømborg 

2016),  

4.  Evaluating  the impacts of battery storage on residential energy 

consumption (Khafaf et al. 2021).  

Feature normalization matters especially when using the  Euclidean distance to 

compute dissimilarity between clustering units, which is the most common case 

and which will be discussed later in this section.  

3.2.2  Temporal structure  

One other important aspect to consider is the temporal resolution at which the 

analys is is performed. Given that electricity consumption is not necessarily and 

often not homogeneous across hours, days and months, any choice between 

these resolutions can offer interesting insights. In general, different time 

perspectives serve different ana lytical purposes:  

¶ Hourly consumption analyses allow for studying typical occupant profiles 

and behaviors  over a day [15].  

¶ Daily consumption analyses allow for similar studies, but they consider 

differences in occupancy and behavior  between weekdays and wee kends 

(Czétány et al. 2021).  

¶ Monthly consumption analyses allow for examining the effects of seasons 

on the occupancy and energy behaviors  of households. Recently, the 

purposes of monthly consumption studies have been extended to 

examining the effects of C OVID-19 lockdown measures on energy 

consumption (García et al. 2021b). Monthly analyses typically focus on 

selected months of the year, e.g.: January, April, August, October 

(Czétány et al. 2021), February 2020 ð October 2020 (García et al. 2021b).  

Typical SM electricity consumption data is sampled every 15 minutes or 1 hour, 

which lends itself to any of the time structures above. SM solutions with 

increased sampling rates (e.g., Eco -Touch, providing thousands of samples per 

second), can serve additi onal purposes, such as extracting information about 

the consumption of individual electrical devices (Qureshi, Ghiaus, and Ahmad 

2021).  

3.2.3  Features reduction  

Electricity consumption data collected by Smart Meters is usually high -

dimensional. To facilitate com paring different electricity consumption profiles, 

dimensionality reduction may be used, e.g., by clustering of extracted features 

instead of raw or normalized  data. Some examples of statistical features that 

can be extracted from Smart Meter data include (Jiahong, Zhigang, and Xiang 

2021):  
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¶ Mean ð arithmetic average of the electricity consumption values;  

¶ Count Above Mean ð number of data points above the mean;  

¶ First Location of Maximum ð first location of the maximum of electricity 

consumption profile ; 

¶ Autocorrelation ð degree of similarity between a given electricity 

consumption time series and its lagged version over consecutive time 

windows;  

¶ Complexity -invariant Distance ð measure of complexity of the electricity 

consumption profile;  

¶ Kurtosis ð measur e of the sharpness of the electricity consumption peaks;  

¶ Skewness ð measure of the direction and degree of asymmetry in the 

electricity consumption profile.  

Other techniques involve removing features with low variance, e.g. via PCA (Wen, 

Zhou, and Yang 201 9). By reducing the number of features and focusing on the 

most relevant dimensions of variation of the dataset, we can help the clustering 

algorithm identifying distinct clouds of points. On the other hand, the more the 

variable is condensed or transforme d, the harder it might become to interpret 

it.  

A consumption time series can also be decomposed into periodical components, 

which might approximate the original time series values with a more synthetic 

set of coefficients at an affordable accuracy loss. A plethora of techniques 

discussed in the time series literature could be adopted, although as above for 

other dimensionality reduction means the interpretability of the resulting 

clustering can become challenging.  

Features can be derived also from a previou s clustering phase in a two -stage 

approach (Kwac, Flora, and Rajagopal 2014) (Marangoni and Tavoni 2021). For 

example, a first stage is used to compute typical daily load curves. In a second 

stage, clustering is applied to identify HHs which share similar patterns of 

preference for the representative daily load curves identified in the first stage. 

One could replace the first stage with other types of analyses, like a regression, 

in general with the objective to characterize a household with a set of 

coeffi cients which is less numerous than the ensemble of raw initial data points 

available but still similarly informative.  

3.2.4  Descriptive features  

Combining electricity consumption data from SM with households socio -

economic, technical, and spatial characteristics  may allow for understanding the 

drivers of energy consumption. For instance, these drivers may cover:  

¶ socio -economic and behavioral  factors, e.g., age of chief income earner, 

employment status o f adults, number of children, non -occupancy  for 

more than 6 h ours during the weekdays, social class of chief income 
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earner, number of residents, education, income (Wei and Wang 2021) 

(Beckel et al. 2014) ; 

¶ technical factors, e.g., number of appliances, household square footage 

number of bedrooms, type of cooking faci lity (electrical / not electrical), 

building type (e.g., single -family, multi -family), building age, use of heat 

pump (Kipping and Trømborg 2016) (Czétány et al. 2021) (Wei and Wang 

2021) (Beckel et al. 2014) ; 

¶ spatial factors, e.g., village / town / city ( Czétány et al. 2021).  

Such data can be collected through various sources, such as national statistics 

agencies (Gans, Alberini, and Longo 2013), regulatory authorities (Beckel et al. 

2014), distribution system operators (Kipping and Trømborg 2016), or by o ther 

institutions, such as operators of Demand Response programs . 

Other HH -invariant temporal characteristics include  the  weather and electricity 

price, which could also explain variations in the consumption signal. The most 

common approach to account for these variables is to evaluate their effect in a 

regression framework, and then cluster the consumption data net of these 

exogenous effects.  

3.3  Clustering approaches  

3.3.1  ▓-means  

One of the most popular clustering techniques, wide spread  due to its simplicity, 

is Ὧ-means clustering. The number of clusters N is fixed at the beginning. Ὧ-
means divide the data in N groups, each of them with an associated centroid, 

which is the data point that minimizes the sum of squared distances to all o ther 

points in its cluster, computed with a selected distance measure. The best 

division is the one that minimize s the within -cluster sum of square, also called 

inertia .  

Finding the exact solution of Ὧ-means is a NP -hard optimization problem 

(Dasgupta 20 08). The most common algorithm associated with Ὧ-means is 

Lloydõs algorithm (Lloyd 1982), which is simple and fast, but it only finds an 

approximate solution. In its basic version, the initial centroids are chosen 

uniformly at random from the data. Subseq uently , each data point is assigned 

to the closest centroid, using a distance function, and then new values for 

centroids are calculated. The procedure is repeated until it converges. In general , 

the algorithm achieves a local minimum which depends on the initial arbitrary 

centers chosen in the data. An improved version of the algorithm, called Ὧ-
means++ , chooses the centers far away from each other, becoming in this way 

faster and simpler compared to the Lloydõs algorithm. 

With Ὧ-means, the number of clu sters is a parameter of the algorithm. In some 

cases, domain knowledge helps in finding the required number  of cluster s. When 

the value has to  be deduced from the data, instead, finding the ideal number of 

clusters is not trivial. The goodness of the clusters can be assess ed by the final 
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value of the inertia or SSE (Sum of Square Error). This value, though, typically 

decreases with the number of  clusters, because more clusters can better fit the 

data. An optimal amount  of cluster s can be chosen as the elbow  of the SSE, which 

is the number of clusters at which the SSE marginal improvement start s to 

decrease markedly (Satopaa et al. 2011).  

3.3.2  Dynamic Time Warping  

The most common distance measure used in Ὧ-means is the Euclidean  distance, 

which is a general -purpose metric . A distance measure more specific to time -

series data evaluates the similarity between the shapes of the temporal curves, 

while ignoring differences in amplitude and offset, as well as differences in small 

global or local alignment. An appropriate normalization of the data, like the z -

normalization, allows to control for amplitude and offset differences. 

Nonetheless, small differen ces in global or local alignment might be 

overweighed by a Euclidean approach. Dynamic Time Warping (DTW) fulfills the 

requirements above. It finds a match ( warping path ) between points in the 

curves with non -linear alignment (Sakoe and Chiba 1978). Common ly, the 

warping path is constrained by a warping window  to a subset of all the possible 

pair of points. One common constrain is to impose a maximum time interval 

between two matched point s, with the so called Sakoe-Chiba band (Sakoe and 

Chiba 1978). The DT W is considered one of the most suitable distance s when 

dealing with time series data (Ma and Angryk 2017; Teeraratkul, OõNeill, and Lall 

2017). Note that when using DTW for Ὧ-means clustering, the centroid should 

be computed accordingly to the distance u sed, instead of the mean. The most 

appropriate method for computing the centroid coherently with the DTW is the 

Dynamic Time Warping Barycenter Averaging  (DBA) (Petitjean, Ketterlin, and 

Gançarski 2011).  

Dynamic Time Warping has the drawback of being compu tationally expensive. 

The Ὧ-Shape algorithm (Paparrizos and Gravano 2015), based on a normalized 

version of cross -correlation, is similar to DTW in clustering time series by 

considering their shape, but it is faster.  

3.3.3  ▓-means extensions  

Since the first introduction of Ὧ-means, many extensions have been proposed 

(Jain 2010); one of them is Ὧ-medoids (Arthur and Vassilvitskii 2006). While Ὧ-
means aims at minimizing the within cluster sum -of -squares, Ὧ-medoids 

minimizes the sum of distan ces between each point and the medoid of its 

cluster. Thus the Ὧ-medoids use an existing data point (the medoid) as cluster 

center, while for the Ὧ-means the center is the mean value of the cluster points. 

In the Fuzzy c -means , introduced in 1973 (Dunn 1 973), each point has a degree 

of belonging to each cluster.  
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3.3.4  Hierarchical clustering  

The Hierarchical  clustering is a deterministic algorithm, and it creates a 

dendrogram  (tree) with an agglomerate (bottom -up) or divisive (top -down) 

approach. In the (most c ommon) agglomerative method, at each step two data 

points ð or one data point and a cluster, or a pair of clusters ð are merged 

together to form clusters (or bigger clusters). In this way they form a nested 

partition, until all data points are merged in on e single cluster. Accordingly, the 

number of clusters does not have to be determined a priori. The distance 

typically used between data point s is the Euclidean, but with time series 

clustering DTW can be a useful choice. Different linkage criteria  determin e how 

to compute the distance between clusters, knowing the pairwise distance 

between data points. With the Single Linkage  criterion, the distance between two 

clusters is the distance between the two closest pairs of data points, while with 

the Maximum or Complete Linkage , the proximity between the two furthest away 

points is considered. The Average Linkage  uses the average distance between 

pairs of observations; additionally, the Ward Linkage  computes the sum of 

squared differences within all clusters. The  Ward criteria is similar to the Ὧ-
means objective function. Being computationally expensive is one of the main 

drawbacks  of the Hierarchical clustering, which makes it inadequate for  

analyzing big datasets.  

3.3.5  Other approaches  

¶ Finite Mixture Model (FMM)  (Haben, Singleton, and Grindrod 2015; 

McLachlan, Lee, and Rathnayake 2019) is a statistical framework that 

models a mixture of categorical and continuous data. The FMM chooses 

optimal weights for each input parameter for each cluster. Compared to 

Ὧ-means, no distance measure needs to be defined, but the final clusters 

may be less compact because the algorithm primarily aims at fitting a 

model.  

¶ Latent class regression , known also as cluster -wise regression , is a 

discrete finite mixture model (Vermunt and Mag idson 2003) and it 

integrates classification and regression. In (Hsu 2015) , the technique has 

been applied to SM data and compared with Ὧ-means: results show that 

cluster -wise regression has better prediction accuracy but more unstable 

clusters, compare d to Ὧ-means. Bootstrap methods are typically used for 

measuring classification uncertainty in latent class analysis (Dias and 

Vermunt 2006).  

¶ The Self-Organizing  Maps (SOM) (Kohonen 2012; Chicco et al. 2004) is an 

unsupervised neural network that project s a dataset into a bi -dimensional 

space, from where cluster identification is then more straightforward. In 

(McLoughlin, Duffy, and Conlon 2015) , it is applied to SM data, and 

authors show that it performs better than Ὧ-means and k -medoid.  

¶ In (Ferreira and Z hao 2016) , authors transform the task of clustering time 

series in a topological problem of finding communities in network.  
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From the literature it is clear that clustering  results can be very different 

depending on the algorithm, variable selection, and data characteristics (Jain 

2010; Steinley and Brusco 2008). Despite many comparisons can be found in the 

literature, clustering should not be evaluated ignoring the context and goals for 

which it is used (Von Luxburg, Williamson, and Guyon 2012). For example, 

exploratory or confirmatory analysis may require different clustering 

approaches.  

The scope of this report is to evaluate clustering approaches specifically in the 

conte xt of smart meter data. In Section 3.1 , and following sections, we suggest 

possible applications of some of the techniques illustrated above with real -world 

case studies from Italy and Poland.  

3.3.6  Number of clusters  

Depending on the algorithm, the number of clusters may either need to be 

defined from the beginning or it could be the result of the clustering algorithm 

itself. In any case, there may be different ways to evaluate the goodness of the 

clustering and thus infer the best choice of clusters number.  

¶ As we describe in 2.4.1 , one common method to find the number of 

clusters is the elbow method, consisting on finding the elbow  of the value 

of inertia (or SSE ð Sum of Square Error ) as a function of the number of 

clusters (see previous section). Other ways to evaluate clusters are the 

following.  

¶ The Silhouette  analysis estimates how similar a data point is to other 

point s in the same clusters, compared to point s in different cluster s. The 

range is between ρ and ρ, where the maximum refers to a well -clustered 

set of data points. The Silhouette coefficient  is the mean of the silhouette 

for the whole dataset.  

¶ The Davies -Bouldin Index (DB index)  (Davies and Bouldin 1979) assess es 

the le vel of separation between clusters. It consists of an averaged over 

all the clusters, of the similarity between a cluster and its most similar 

one. Better clusters have a lower DB index. DB index uses the Euclidean 

distance in the computation of similarity . 

¶ In the Gap statistic method  (Tibshirani, Walther, and Hastie 2001), gap 

statistic  is computed for different amounts  of cluster s, by comparing the 

total within cluster variations with their expected values in uniform 

distribution of the data. The selected number  of cluster s is thus the one 

that yields the larger gap statistic.  

¶ The Bayesian information criterion (BIC)  (Zhao, Xu, and  Fränti 2008) is a 

criterion for model selection based on the balance between the likelihood 

of the model and the penalty for the number of model parameters. For 

the clustering methods, the number of parameters is the number of 

clusters; the motivation beh ind this approach is to increase the likelihood 

while avoiding overfitting.  
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On top of these evaluation criteria, other cluster validity indexes can be used 

(Rajabi et al. 2020), i.e. the sum of square method s, which minimize the within 

cluster sum of squar es while maximizing the between -cluster sum of square s. 

3.4  A-posteriori analysis  

There are several types of analyses which can be performed once the clusters 

are obtained . 

First, as illustrated in the case studies, one possibility is to quantify correlations 

of clusters with excluded features . For example, the dataset could be sliced by 

HH socio -economic variables (e.g. age, income), or by weather (e.g. 

temperature), or by other exogenous signal s, and the recurrence of clusters 

could be checked within each bin  of the dataset. This will form a potential 

relationship between the non -clustered features and the hourly consumption 

patterns.  

Second, another analysis which will also be illustrated in the case study is to 

consider a two -stage clustering , where users ar e clustered depending on the 

frequency of the clustered daily load curves they rely upon. The first -stage 

clusters become features for the second -stage, as already mentioned before.  

Third, given the abundance of alternative methods and assumptions for 

clus tering, where possible , it might be advisable to perform sensitivities on the 

clustering obtained . Changing any step in the clustering pipeline, from feature 

selection to the distance metrics adopted, and from the clustering algorithm to 

the choice of the number of clusters, can lead to more or less diverse results. 

Being an unsupervised machine -learning  tool, there is no right or wrong 

clustering, but rather a more or less fitting clustering outcome for a given 

research question. The several goodness -of -fi t metrics discussed above can also 

help to guide the analysis  towards the most informative clustering setups.  

3.5  Numerical implementation  

The availability of open -source numerical packages that already implement most 

of the discussed algorithms in Python ( Pedregosa et al. 2011) or R (Montero and 

Vilar 2015) make exploration and experimentation particularly convenient. 

Open -source software enables  the  community of analysts and researchers to 

share the efforts of development and testing, while sharing knowled ge, solving 

bugs and expanding the available set of tools. It is also an essential principle for 

reproducible and transparent research.  

The main challenges in terms of numerical application of any of the algorithms 

available in the open -source  community is  the fine -tuning  required to get the 

clustering setup with the best goodness of fit for the question at hand, and the 

scaling with what usually can become very large datasets. Smart meter data with 

thousands of HHs and millions of hourly readings can becom e quickly intractable  

to analyze. Limited computational resources and time for analysis can become 

decisive factors to prefer certain clustering algorithms (e.g. k-means over DTW) 
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and certain feature extraction strategies (e.g. with the reduced dimensional ity 

of a two -stage clustering) with particularly large data ensembles.  
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4.  Italian case study 1 ð Bologna  

In this section, we study SM data for the region around Bologna in Italy. The 

purpose of this study is mainly to describe and show the kind of informatio n 

that is  obtainable through clustering algorithms and related analysis. 

Furthermore, we compare the clusters computed through different clustering 

choices to underline differences and advantages.  

4.1  Data characteristics  

The dataset consists of Smart meter da ta from households with hourly precision. 

For the year 2019, the period is the whole year, with new users gradually 

incorporated until May. The second period considered goes from December 

2019 to the end of October 2020; we refer to this dataset as 2020. T he 2020 

dataset ha s more users compared to the 2019 one:  

¶ 2019, from January to December: 163 users, 57 ,744 total daily profiles, 

with an average of 354 days for each user.  

¶ 2020, from December (2019) to November (2020): 1 ,014 users, 339 ,208 

total daily profiles, with an average of 334 days for each user.  

In the first part of our study , we focus only on the 2019 dataset. Then , in section 

3.1.6 , we compare the clusters obtained for the two periods.  

4.2  Method description  

The preprocessing of data consists of the following steps. We eliminate duplicate 

data, discard data with zero consumption and days with less than 24 hours of 

valid data. We exclude days of the year in which data are missing for most of the 

users; finally, w e remove users with less than 350 (for 2019, 330 for 2020) of 

valid daily data.  

Here we are interested in clustering the daily profile (the data points are the daily 

electricity consumptions of single household, with hourly resolution ) based  on 

their shape , not their amplitude or their offset (Paparrizos and Gravano 2015). 

For time series Ὧ-means clustering, standardization  is an appropriate solution, 

to avoid that higher peak s dominate cluster formation. Standardization, also 

called Z-score normalization , re-scales data to a normal distribution with zero 

mean and unitary standard deviation. This objective can be reached if data follow 

the normal distribution. When this condition is not fulfilled, the normalization  

(Min-Max normalization ) is a valuable alternative. In our case, the distribution of 

consumption values is log -normal. Therefore , we first take the logarithm of the 

data, and subsequently we standardize them, so then we obtain data normally 

distributed. 0+,  emphasizes the import ance of secondary peaks in the cluster  

formation, in particular with Euclidean  distance. Without the logarithm, clusters 
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are driven more by the strongest signal, which lead to clusters with high 

individual peaks. In this analysis we decide to consider the logarithm, 

acknowledging that both are viable ways. The final choice depends on whether 

differences in the highest end should be perceived the same as differences in 

the lowest end of the electricity consumption scale (i.e. no logarithm) or with 

diminishin g importance (i.e. with the logarithm).  

We cluster daily consumption profiles of users throughout the year. When we 

apply standardization, we examine two settings: either we standardize over the 

daily consumption of the user ( daily standardization ), or we standardize over 

their yearly consumption ( yearly standardization ). We will show that these two 

different approaches determine measurable differences in the resulting clusters.  

For the clustering method, we use Ὧ-means clustering algorithm, because it giv es 

consistent results and it is applicable also with big datasets. We use Ὧ-means++ 

in the choice of initial centroids, which is a better extension of Ὧ-means to try to 

reach global maximum (see Section 2.4.1 ). We compute  results with both 

Euclidean  distance and Dynamic Time Warping (DTW) . When using the DTW, for 

consistency we use Dynamic Time Warping Barycenter Averaging (DBA) for 

computing centroids (Section 2.4.1 ). We choose a Sakoe-Chiba radius  of 2; 

roughly speaking, this translate s in considering as similar two profiles with a 

temporal shift of 2 (hours) between them. We use the elbow method with inertia 

(see Section 2.4.6 ) to estimate the number of clusters; with the different settings 

that we explore, a number of ten clusters is in general the best value (see Figure 

2). Inertia is obtained measuring the distance between each data point an d its 

centroid, squaring this distance, and summing these squares across one cluster. 

When computing Ὧ-means, because the obtained clusters may not be the global 

minimum, we compute the clusters multiple time s (for every choice of number 

of clusters) and we keep the solution with minimum inertia.  

Figure  2:  Elbow method for choosing the optimal k. The inertia of the 

model is plotted against the number of clusters. The elbow of 

the curve is the optimal number of clusters (vertical li nes are 

slightly shifted for better visualization).  

 

Data is from the year 2019. We compare the results of the clustering with Ὧ-
means and Euclidean  or DTW distances, and with yearly  or daily  standardization. 
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Inertia is obtained by measuring the distance between each data point and its 

centroid, squaring this distance, and summing these squares across one cluster.  

4.3  Clusters description  

Figure  3:  Clusters obtained with Ὧ-means and Euclidean  distance, for 

the 2019 dataset with yearly standardization  of the 

logarithm of consumption. For each cluster , we show the 

percentage of profiles described by it (in the brackets) and 

the times of the peaks (in square brackets). We also report if 

the media n of the daily consumption in the cluster is in the 

low, medium of high tertile of the daily co nsumption 

throughout the year.  
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Figure  4:  Cluster distribution for each season, and for weekday versus 

Saturday and Sunday. Results refer to the clusters of Figure 3.  
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Figure  5:  Cluster distribution for house hold with low consumption 

(users whose yearly consumption is in the lower tertile of the 

overall yearly consumption in the dataset), medium  and high. 

For the three plots we show also the overall cluster 

distribution, regardless of the tertile.  Results refe r to the 

clusters of Figure 3.  
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Figure  6:  Clusters of users based on the cluster frequency of their daily 

profiles. Year 2019, clusters of daily consumption are the 

same of Figure 3; the clusters of those profiles are obtained 

with Ὧ-means and Euclidean distance, and one hundred 

repetitions of the algorithm to find the best inertia. For each 

cluster a ðf, we wrote the percentage of users who belong to 

it, and the tertile of the median of energy consumption that 

the users belo ng to.  

 

In Figure 3, we show the clusters of daily consumption obtained with Euclidean  

distance, on the 2019 data with yearly standardization. The values on the y -axis 

are the yearly standardization of the logarithm of the consumption. The cluster 

sizes are quite homogeneous (see the fraction of profiles in each cluster), 

meaning that each cluster describe s a relevant fraction of the data . The 

clustering method distinguishes between flatter profiles, and other with two or 

three peaks of different prominence.  

The values in the square brackets indicate the peak time of the median of the 

cluster profiles. Peak times are usually located in the morning, lunch time and 

dinner time; the exact time within these periods varies between clusters, as well 

as the relative height of the different peaks. For each cluster, we report to which 

tertile (third part) of daily consumption it belongs to. In other words, we compute 

the median of the daily consumption for the cluster, and we check in which tertile 

of daily consumption it falls considering the whole 2019 dataset. Thus , clusters 

in the high tertile are likely to be formed by profiles of high consumptio n days, 

and similarly for medium and low tertile -consumption. In Figure 4, we show the 

distribution of the days in the different clusters, depending on the season and 

the day of the week. For s implicity , seasons  are defined based on the months : 

winter (December ðFebruary), spring (March ðMay), summer (June ðAugust), 

autumn (September ðNovember). Regarding the day of the week, the most 

significant differences are expected between week -days and Saturd ay and 

Sunday.  
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Looking at Figure 3, we can characterize the clusters in this way:  

¶ Cluster 1. Afternoon consumption, with high peak at lunch and important 

consumption throughout the whole aftern oon. Overall, high consumption 

day. From the season distribution of Figure 4, we see that it is more 

common in the winter, and during the weekend, when household 

members are more likely to be a t home.  

¶ Cluster 2. High late morning, and lower dinner peaks. Medium 

consumption day. Typical in every season, a little less in the summer and 

during the week.  

¶ Cluster 3. High consume, in particular in the evening. Typical during 

winter and summer, indepen dently of the day of the week.  

¶ Cluster 4. All day at work, with a higher dinner peak and medium 

consumption day. It is wide spread across all seasons apart from summer 

(holiday period) and it is more prominent during the week.  

¶ Cluster 5. Low consumption da y. Slightly more common in the summer, 

and during weekend. It may refer to vacation days in which people do not 

spend time at home.  

¶ Cluster 6. High consumption almost uniform throughout the day, a bit 

lower in the night. Common in winter and summer, unifor mly through the 

week . It may thus correspond to heating and cooling system.  

¶ Cluster 7. Medium peak for early breakfast, small peak for lunch, high for 

dinner. More common in the spring and autumn: the consumption is 

overall not so high , so most likely it d oes not include heating and cooling. 

Also more frequent during the week, describing thus a typical working 

day, with low consumption.  

¶ Cluster 8. Uniform low consumption day (with some activity in the 

morning). Common in the summer, independently of the day  of the week.  

¶ Cluster 9. Late lunch -evening (medium) consumption day. Typical in 

spring and autumn (when heating and cooling are  not required), more 

often in the weekend.  

¶ Cluster 10. High consumption day, with uniform consumption and little 

variation for breakfast, lunch, dinner. More common in summer and 

winter, during weekdays . 

To explore the relation between the clusters of daily profiles and the household 

type, we divid e users in to  three tertiles of yearly consumption: low, medium and 

high consumption tertile. In Figure 5, we show the clusters distribution for each 

tertile. Notice that the tertile in this fig ure refers to high -medium -low 

consumption households , while the tertile of Figure 3 refers to high -medium -low 

consumption days . From Figure 5, we learn that cluster 8 is more common in 

low consumption users, which is not surprising considering that cluster 8 is a 

low consumption profile cluster; but cluster 6 as well is more common in low 
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consumption household, despite being a high c onsumption day. In Figure 22  in 

the Appendix , we show the same results but divided by the season.  

We further explore the user types, beyond the division based on their overall 

consumption, we p erformed a cluster of the users. For each one of the 163 

households , we consider the (normalized) daily cluster distribution throughout 

the year. We then compute the Ὧ-means clusters using Euclidean  distance, and 

through the elbow method we choose six as the optimal number of clusters. 

From the results shown in Figure 6, we see that a user t ype (d) has  a 

homogeneous distribution of daily p rofile type, while others have one or two 

clusters more prominent than others. From the figure we can also  identify the  

tertile of consumption to which the users of the cluster belong.  

Figure  7:  Clusters obtained with Ὧ-means and Euclidean  distance, for 

the 2019 dataset with daily standardization  of the logarithm 

of consumption. For each cluster we show the percentage of 

profiles described by it, and the time of t he peaks (in square 

brackets).  

 

The results shown so far are obtained with the data yearly  standardized, 

meaning that daily profiles of a user are z -normalized relatively to the overall 

consumption of the user throughout the year. In this way, in the clusters 3 we 

distinguish more than one approximately flat profiles, clustered separately 

because of the different heights. Accordingly, we can distinguish between low 
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consumption days and days  with more uniform use of electricity , as we described 

with the analysis presented so far. By contrast, if the focus of the analysis is on 

the time of peaks only, regardless of the yearly share of consumption, the daily  

normalization is more appropriate. Results obtained with daily  standardiz ation 

are shown in Figure 7; here we can see indeed that there is only one cluster with 

flat profile. On top of that, each cluster belong s to the medium tertile of daily 

consumption, meaning th at there is no  prominent correlation between cluster 

affiliation and consumption. We also notice the presence of a õnight 

consumptionõ cluster (10), not evident in the yearly  standardized case. For 

completeness, we show in the Appendix also the cluster dis tribution for each 

season and day of week (Figure 23 ), the cluster distribution depending on 

consumption (Figure 24 ) and the clust er of users depending on their daily profile 

distribution (Figure 25 ). For brevity, we are not going through the complete 

description of the clusters ' characteristics for the daily  standardizat ion as we 

have done in Section 3.1.3  for yearly  standardization. An example of insight 

from this analysis is the following: Cluster 6 in (Figure 7) is a typical description 

of a weekend (at home), most common in the winter; high consumption 

households have higher frequency of this consumption profile compared to the 

average household. For cluster e of consumer (Figure 25 , high tertile of 

consumers), the profile 6 of consumption is the most prevalent one.  
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Figure  8:  Clusters obtained with Ὧ-means and DTW distance, for the 

2019 dataset with yearly standardization  of  the logarithm of 

consumption. For each cluster , we show the percentage of 

profiles described by it, and the time of t he peaks (in square 

brackets).  
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Figure  9:  Comparison between the clusters obtained with Ὧ-means and 

Euclidean distance (Figure 3) and those obtained with DTW 

(Figure 8). The centroids here refer to the median of the 

sig nals in each cluster. The Euclidean centroids are match ed 

with the most similar DTW centroids. We separately plot the 

centroid φ of DTW because it does not match any Euclidean 

centroids, while DTW cluster 9 (in red) matches two Euclidean 

centroids ( τ and χ). 

 

Using the distance measure designed for comparing possibly unaligned time 

series, the Dynamic Time Warping (DTW), the daily consumption profiles are 

clustered as shown in Figure 8. In this  case, the centroids are not smooth, 

because they are computed using the Dynamic Time Warping Barycenter 

Averaging  (DBA, (Petitjean, Ketterlin, and Gançarski 2011)) instead of the mean 

used for the Euclidean  distance. To better compare the clusters obtained with 

DTW and Euclidean distance, we match the medians obtained with the two 

approaches, as shown in Figure 9 (in Figure 27  instead we show the most 

prominent differences when data are daily  normalized). We see that both 

Euclidean and DTW distances manage to capture a wide variety of behaviors , 

which  mostly correspond among the two di stances. The DTW distance presents 

some clusters with peaks of comparable heights (i.e. cluster 6 and 8 in Figure 8 

and 9), while in the Euclidean clusters typically there is a peak which is quite 

more prominent than the others. Overall, the two methods give both interesting 

and consistent results for the analysis of SM data. While this dataset was 

relatively small, for the applicati on in bigger dataset of electricity consumption, 

Euclidean  distance is recommended for being computationally more feasible.  




























































